SkyWatch: A Passive Multistatic Radar Network for the Measurement of Object Position and Velocity
SkyWatch: A Passive Multistatic Radar Network for the Measurement of Object Position and Velocity
Published on April 18, 2023
Mitch Randall, Alex Delacroix, Carson Ezell, Ezra Kelderman, Sarah Little, Abraham Loeb, Eric Masson, Wesley Andrés Watters, Richard Cloete, and Abigail White
Mitch Randall, Alex Delacroix, Carson Ezell, Ezra Kelderman, Sarah Little, Abraham Loeb, Eric Masson, Wesley Andrés Watters, Richard Cloete, and Abigail White
Share Paper
Link Copied
Share Paper
Link Copied
Share Paper
Link Copied
0:00/1:34
Audio Summary
Powered by NotebookLM. This AI-generated audio may not fully capture the research's complexity. Refer to the full paper for complete details.
Quantitative three-dimensional (3D) position and velocity estimates obtained by passive radar will assist the Galileo Project in the detection and classification of aerial objects by providing critical measurements of range, location, and kinematics. These parameters will be combined with those derived from the Project’s suite of electromagnetic sensors and used to separate known aerial objects from those exhibiting anomalous kinematics. SkyWatch, a passive multistatic radar system based on commercial broadcast FM radio transmitters of opportunity, is a network of receivers spaced at geographical scales that enables estimation of the 3D position and velocity time series of objects at altitudes up to 80km, horizontal distances up to 150km, and at velocities to ±2km/s (±6 Mach). The receivers are designed to collect useful data in a variety of environments varying by terrain, transmitter power, relative transmitter distance, adjacent channel strength, etc. In some cases, the direct signal from the transmitter may be large enough to be used as the reference with which the echoes are correlated. In other cases, the direct signal may be weak or absent, in which case a reference is communicated to the receiver from another network node via the internet for echo correlation. Various techniques are discussed specific to the two modes of operation and a hybrid mode. Delay and Doppler data are sent via internet to a central server where triangulation is used to deduce time series of 3D positions and velocities. A multiple receiver (multistatic) radar experiment is undergoing Phase 1 testing, with several receivers placed at various distances around the Harvard–Smithsonian Center for Astrophysics (CfA), to validate full 3D position and velocity recovery. The experimental multistatic system intermittently records raw data for later processing to aid development. The results of the multistatic experiment will inform the design of a compact, economical receiver intended for deployment in a large-scale, mass-deployed mesh network. Such a network would greatly increase the probability of detecting and recording the movements of aerial objects with anomalous kinematics suggestive of Unidentified Aerial Phenomena (UAP).
Quantitative three-dimensional (3D) position and velocity estimates obtained by passive radar will assist the Galileo Project in the detection and classification of aerial objects by providing critical measurements of range, location, and kinematics. These parameters will be combined with those derived from the Project’s suite of electromagnetic sensors and used to separate known aerial objects from those exhibiting anomalous kinematics. SkyWatch, a passive multistatic radar system based on commercial broadcast FM radio transmitters of opportunity, is a network of receivers spaced at geographical scales that enables estimation of the 3D position and velocity time series of objects at altitudes up to 80km, horizontal distances up to 150km, and at velocities to ±2km/s (±6 Mach). The receivers are designed to collect useful data in a variety of environments varying by terrain, transmitter power, relative transmitter distance, adjacent channel strength, etc. In some cases, the direct signal from the transmitter may be large enough to be used as the reference with which the echoes are correlated. In other cases, the direct signal may be weak or absent, in which case a reference is communicated to the receiver from another network node via the internet for echo correlation. Various techniques are discussed specific to the two modes of operation and a hybrid mode. Delay and Doppler data are sent via internet to a central server where triangulation is used to deduce time series of 3D positions and velocities. A multiple receiver (multistatic) radar experiment is undergoing Phase 1 testing, with several receivers placed at various distances around the Harvard–Smithsonian Center for Astrophysics (CfA), to validate full 3D position and velocity recovery. The experimental multistatic system intermittently records raw data for later processing to aid development. The results of the multistatic experiment will inform the design of a compact, economical receiver intended for deployment in a large-scale, mass-deployed mesh network. Such a network would greatly increase the probability of detecting and recording the movements of aerial objects with anomalous kinematics suggestive of Unidentified Aerial Phenomena (UAP).
Research Team
Galileo Project
The Scientific Investigation of Unidentified Aerial Phenomena (UAP) Using Multimodal Ground-Based Observatories
Wesley Andrés Watters, Abraham Loeb, Frank Laukien, Richard Cloete, Alex Delacroix, Sergei Dobroshinsky, Benjamin Horvath, Ezra Kelderman, Sarah Little, Eric Masson, Andrew Mead, Mitch Randall, Forrest Schultz, Matthew Szenher, Foteini Vervelidou, Abigail White, Angelique Ahlström, Carol Cleland, Spencer Dockal, Natasha Donahue, Mark Elowitz, Carson Ezell, Alex Gersznowicz, Nicholas Gold, Michael G. Hercz, Eric Keto, Kevin H. Knuth, Anthony Lux, Gary J. Melnick, Amaya Moro-Martín, Javier Martin-Torres, Daniel Llusa Ribes, Paul Sail, Massimo Teodorani, John Joseph Tedesco, Gerald Thomas Tedesco, Michelle Tu, and Maria-Paz Zorzano
May 13, 2023
The Scientific Investigation of Unidentified Aerial Phenomena (UAP) Using Multimodal Ground-Based Observatories
Wesley Andrés Watters, Abraham Loeb, Frank Laukien, Richard Cloete, Alex Delacroix, Sergei Dobroshinsky, Benjamin Horvath, Ezra Kelderman, Sarah Little, Eric Masson, Andrew Mead, Mitch Randall, Forrest Schultz, Matthew Szenher, Foteini Vervelidou, Abigail White, Angelique Ahlström, Carol Cleland, Spencer Dockal, Natasha Donahue, Mark Elowitz, Carson Ezell, Alex Gersznowicz, Nicholas Gold, Michael G. Hercz, Eric Keto, Kevin H. Knuth, Anthony Lux, Gary J. Melnick, Amaya Moro-Martín, Javier Martin-Torres, Daniel Llusa Ribes, Paul Sail, Massimo Teodorani, John Joseph Tedesco, Gerald Thomas Tedesco, Michelle Tu, and Maria-Paz Zorzano
May 13, 2023
The Scientific Investigation of Unidentified Aerial Phenomena (UAP) Using Multimodal Ground-Based Observatories
Wesley Andrés Watters, Abraham Loeb, Frank Laukien, Richard Cloete, Alex Delacroix, Sergei Dobroshinsky, Benjamin Horvath, Ezra Kelderman, Sarah Little, Eric Masson, Andrew Mead, Mitch Randall, Forrest Schultz, Matthew Szenher, Foteini Vervelidou, Abigail White, Angelique Ahlström, Carol Cleland, Spencer Dockal, Natasha Donahue, Mark Elowitz, Carson Ezell, Alex Gersznowicz, Nicholas Gold, Michael G. Hercz, Eric Keto, Kevin H. Knuth, Anthony Lux, Gary J. Melnick, Amaya Moro-Martín, Javier Martin-Torres, Daniel Llusa Ribes, Paul Sail, Massimo Teodorani, John Joseph Tedesco, Gerald Thomas Tedesco, Michelle Tu, and Maria-Paz Zorzano
May 13, 2023
This website (uapcaucus.com) is an independent community-driven platform and is not affiliated with, endorsed by, or representative of any official government entity, including the UAP Caucus within the House of Representatives, or any other official body. The views, frameworks, and content expressed on this site are those of the contributors and do not reflect the official stance or endorsement of any governmental organization.
This website (uapcaucus.com) is an independent community-driven platform and is not affiliated with, endorsed by, or representative of any official government entity, including the UAP Caucus within the House of Representatives, or any other official body. The views, frameworks, and content expressed on this site are those of the contributors and do not reflect the official stance or endorsement of any governmental organization.
This website (uapcaucus.com) is an independent community-driven platform and is not affiliated with, endorsed by, or representative of any official government entity, including the UAP Caucus within the House of Representatives, or any other official body. The views, frameworks, and content expressed on this site are those of the contributors and do not reflect the official stance or endorsement of any governmental organization.