Physical Considerations for an Intercept Mission to a 1I/’Oumuamua-Like Interstellar Object
Physical Considerations for an Intercept Mission to a 1I/’Oumuamua-Like Interstellar Object
Published on April 22, 2023
Amir Siraj, Abraham Loeb, Amaya Moro-Martín, Mark Elowitz, Abigail White, Wesley A. Watters, Gary J. Melnick, Richard Cloete, Jonathan Grindlay, and Frank Laukien
Amir Siraj, Abraham Loeb, Amaya Moro-Martín, Mark Elowitz, Abigail White, Wesley A. Watters, Gary J. Melnick, Richard Cloete, Jonathan Grindlay, and Frank Laukien
Share Paper
Link Copied
Share Paper
Link Copied
Share Paper
Link Copied
0:00/1:34
Audio Summary
Powered by NotebookLM. This AI-generated audio may not fully capture the research's complexity. Refer to the full paper for complete details.
In this paper, we review some of the extant literature on the study of interstellar objects (ISOs). With the forthcoming Vera C. Rubin Telescope and Legacy Survey of Space and Time (LSST), we find that 0.38−84 ‘Oumuamua-like interstellar objects are expected to be detected in the next 10 years, with 95% confidence. The feasibility of a rendezvous trajectory has been demonstrated in previous work. In this paper, we investigate the requirements for a rendezvous mission with the primary objective of producing a resolved image of an interstellar object. We outline the rendezvous distances necessary as a function of resolution elements and object size. We expand upon current population synthesis models to account for the size dependency on the detection rates for reachable interstellar objects. We assess the trade-off between object diameter and occurrence rate, and conclude that objects with the size range between a third of the size and the size of ‘Oumuamua will be optimal targets for an imaging rendezvous. We also discuss expectations for surface properties and spectral features of interstellar objects, as well as the benefits of various spacecraft storage locations.
In this paper, we review some of the extant literature on the study of interstellar objects (ISOs). With the forthcoming Vera C. Rubin Telescope and Legacy Survey of Space and Time (LSST), we find that 0.38−84 ‘Oumuamua-like interstellar objects are expected to be detected in the next 10 years, with 95% confidence. The feasibility of a rendezvous trajectory has been demonstrated in previous work. In this paper, we investigate the requirements for a rendezvous mission with the primary objective of producing a resolved image of an interstellar object. We outline the rendezvous distances necessary as a function of resolution elements and object size. We expand upon current population synthesis models to account for the size dependency on the detection rates for reachable interstellar objects. We assess the trade-off between object diameter and occurrence rate, and conclude that objects with the size range between a third of the size and the size of ‘Oumuamua will be optimal targets for an imaging rendezvous. We also discuss expectations for surface properties and spectral features of interstellar objects, as well as the benefits of various spacecraft storage locations.
Research Team
Galileo Project
The Scientific Investigation of Unidentified Aerial Phenomena (UAP) Using Multimodal Ground-Based Observatories
Wesley Andrés Watters, Abraham Loeb, Frank Laukien, Richard Cloete, Alex Delacroix, Sergei Dobroshinsky, Benjamin Horvath, Ezra Kelderman, Sarah Little, Eric Masson, Andrew Mead, Mitch Randall, Forrest Schultz, Matthew Szenher, Foteini Vervelidou, Abigail White, Angelique Ahlström, Carol Cleland, Spencer Dockal, Natasha Donahue, Mark Elowitz, Carson Ezell, Alex Gersznowicz, Nicholas Gold, Michael G. Hercz, Eric Keto, Kevin H. Knuth, Anthony Lux, Gary J. Melnick, Amaya Moro-Martín, Javier Martin-Torres, Daniel Llusa Ribes, Paul Sail, Massimo Teodorani, John Joseph Tedesco, Gerald Thomas Tedesco, Michelle Tu, and Maria-Paz Zorzano
May 13, 2023
The Scientific Investigation of Unidentified Aerial Phenomena (UAP) Using Multimodal Ground-Based Observatories
Wesley Andrés Watters, Abraham Loeb, Frank Laukien, Richard Cloete, Alex Delacroix, Sergei Dobroshinsky, Benjamin Horvath, Ezra Kelderman, Sarah Little, Eric Masson, Andrew Mead, Mitch Randall, Forrest Schultz, Matthew Szenher, Foteini Vervelidou, Abigail White, Angelique Ahlström, Carol Cleland, Spencer Dockal, Natasha Donahue, Mark Elowitz, Carson Ezell, Alex Gersznowicz, Nicholas Gold, Michael G. Hercz, Eric Keto, Kevin H. Knuth, Anthony Lux, Gary J. Melnick, Amaya Moro-Martín, Javier Martin-Torres, Daniel Llusa Ribes, Paul Sail, Massimo Teodorani, John Joseph Tedesco, Gerald Thomas Tedesco, Michelle Tu, and Maria-Paz Zorzano
May 13, 2023
The Scientific Investigation of Unidentified Aerial Phenomena (UAP) Using Multimodal Ground-Based Observatories
Wesley Andrés Watters, Abraham Loeb, Frank Laukien, Richard Cloete, Alex Delacroix, Sergei Dobroshinsky, Benjamin Horvath, Ezra Kelderman, Sarah Little, Eric Masson, Andrew Mead, Mitch Randall, Forrest Schultz, Matthew Szenher, Foteini Vervelidou, Abigail White, Angelique Ahlström, Carol Cleland, Spencer Dockal, Natasha Donahue, Mark Elowitz, Carson Ezell, Alex Gersznowicz, Nicholas Gold, Michael G. Hercz, Eric Keto, Kevin H. Knuth, Anthony Lux, Gary J. Melnick, Amaya Moro-Martín, Javier Martin-Torres, Daniel Llusa Ribes, Paul Sail, Massimo Teodorani, John Joseph Tedesco, Gerald Thomas Tedesco, Michelle Tu, and Maria-Paz Zorzano
May 13, 2023
This website (uapcaucus.com) is an independent community-driven platform and is not affiliated with, endorsed by, or representative of any official government entity, including the UAP Caucus within the House of Representatives, or any other official body. The views, frameworks, and content expressed on this site are those of the contributors and do not reflect the official stance or endorsement of any governmental organization.
This website (uapcaucus.com) is an independent community-driven platform and is not affiliated with, endorsed by, or representative of any official government entity, including the UAP Caucus within the House of Representatives, or any other official body. The views, frameworks, and content expressed on this site are those of the contributors and do not reflect the official stance or endorsement of any governmental organization.
This website (uapcaucus.com) is an independent community-driven platform and is not affiliated with, endorsed by, or representative of any official government entity, including the UAP Caucus within the House of Representatives, or any other official body. The views, frameworks, and content expressed on this site are those of the contributors and do not reflect the official stance or endorsement of any governmental organization.