Eye on the Sky: A UAP Research and Field Study off New York’s Long Island Coast
Eye on the Sky: A UAP Research and Field Study off New York’s Long Island Coast
Published on August 27, 2024
John Joseph Tedesco and Gerald Thomas Tedesco
John Joseph Tedesco and Gerald Thomas Tedesco
Share Paper
Link Copied
Share Paper
Link Copied
Share Paper
Link Copied
0:00/1:34
Audio Summary
Powered by NotebookLM. This AI-generated audio may not fully capture the research's complexity. Refer to the full paper for complete details.
A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.
A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.
This website (uapcaucus.com) is an independent community-driven platform and is not affiliated with, endorsed by, or representative of any official government entity, including the UAP Caucus within the House of Representatives, or any other official body. The views, frameworks, and content expressed on this site are those of the contributors and do not reflect the official stance or endorsement of any governmental organization.
This website (uapcaucus.com) is an independent community-driven platform and is not affiliated with, endorsed by, or representative of any official government entity, including the UAP Caucus within the House of Representatives, or any other official body. The views, frameworks, and content expressed on this site are those of the contributors and do not reflect the official stance or endorsement of any governmental organization.
This website (uapcaucus.com) is an independent community-driven platform and is not affiliated with, endorsed by, or representative of any official government entity, including the UAP Caucus within the House of Representatives, or any other official body. The views, frameworks, and content expressed on this site are those of the contributors and do not reflect the official stance or endorsement of any governmental organization.